
Two Approaches to Building

Time-Windowed Geometric Data

Structures

Timothy M. Chan and Simon Pratt

SoCG 2016

Cheriton School of Computer Science
University of Waterloo, Canada



Problem Statement

Preprocess a set of n geometric objects
each associated with a time value, s.t.:

given a query window [t1, t2],
determine whether the subset of
objects whose time values are within
that window have a given property.

2



Problem Statement

Preprocess a set of n geometric objects
each associated with a time value, s.t.:

e.g., points or segments

given a query window [t1, t2],
determine whether the subset of
objects whose time values are within
that window have a given property.

2



Problem Statement

Preprocess a set of n geometric objects
each associated with a time value, s.t.:

e.g., points or segments

1 to n

given a query window [t1, t2],
determine whether the subset of
objects whose time values are within
that window have a given property.

2



Problem Statement

Preprocess a set of n geometric objects
each associated with a time value, s.t.:

e.g., points or segments

1 to n

e.g. diameter > 1

given a query window [t1, t2],
determine whether the subset of
objects whose time values are within
that window have a given property.

2



Motivation

• Geographic Information Systems (GIS) data may consist
not only of latitude, longitude, and altitude coordinates but
also time

• Timestamped data (for example, social network data)

3



Example: Time-Windowed Diameter Decision

Preprocess a set of n time-labeled points, to efficiently
determine if the points within the query time window have
diameter > 1.

4



Example: Time-Windowed Diameter Decision

Preprocess a set of n time-labeled points, to efficiently
determine if the points within the query time window have
diameter > 1.

4



Example: Time-Windowed Diameter Decision

1

2

3

4

5

6

7 8

9

1

2

3

4

5

6

7 8

9

Preprocess a set of n time-labeled points, to efficiently
determine if the points within the query time window have
diameter > 1.

4



Example: Time-Windowed Diameter Decision

1

2

3

4

5

6

7 8

9

Example: [2, 5]

Preprocess a set of n time-labeled points, to efficiently
determine if the points within the query time window have
diameter > 1.

4



Example: Time-Windowed Diameter Decision

1

2

3

4

5

6

7 8

9

Example: [2, 5]

Preprocess a set of n time-labeled points, to efficiently
determine if the points within the query time window have
diameter > 1.

4



Example: Time-Windowed Diameter Decision

Example: [2, 5]

2

3

4

5

Preprocess a set of n time-labeled points, to efficiently
determine if the points within the query time window have
diameter > 1.

4



Example: Time-Windowed Diameter Decision

Example: [2, 5]

2

3

4

5

Preprocess a set of n time-labeled points, to efficiently
determine if the points within the query time window have
diameter > 1.

4



Example: Time-Windowed Diameter Decision

Example: [2, 5]

2

3

4

5

Preprocess a set of n time-labeled points, to efficiently
determine if the points within the query time window have
diameter > 1.

4



Example: Time-Windowed Diameter Decision

Example: [2, 5]

2

3

4

5

Preprocess a set of n time-labeled points, to efficiently
determine if the points within the query time window have
diameter > 1.

4



Example: Time-Windowed Diameter Decision

Example: [2, 5]

2

3

4

5

Preprocess a set of n time-labeled points, to efficiently
determine if the points within the query time window have
diameter > 1.

> 1

4



Hereditary Properties

If a set S has a hereditary property P, then any
superset S ′ ⊇ S has P.

5



Hereditary Properties

If a set S has a hereditary property P, then any
superset S ′ ⊇ S has P.

Problem Property
diameter decision diameter > 1

convex hull area decision area of convex hull > 1
orthogonal segment inters. detect. ∃ intersecting segments

width decision width > 1

Examples:

5



Hereditary Properties

If a set S has a hereditary property P, then any
superset S ′ ⊇ S has P.

For each i :

i
1
...
i
...
n

5



Hereditary Properties

If a set S has a hereditary property P, then any
superset S ′ ⊇ S has P.

For each i : store min j s.t. [i , j ] has P

i
1
...
i
...
n

j
j1
...
ji
...
jn

5



Hereditary Properties

If a set S has a hereditary property P, then any
superset S ′ ⊇ S has P.

For each i : store min j s.t. [i , j ] has P

i
1
...
i
...
n

j
j1
...
ji
...
jn

Query: [i , k]

5



Hereditary Properties

If a set S has a hereditary property P, then any
superset S ′ ⊇ S has P.

For each i : store min j s.t. [i , j ] has P

i
1
...
i
...
n

j
j1
...
ji
...
jn

Query: [i , k]

5



Hereditary Properties

If a set S has a hereditary property P, then any
superset S ′ ⊇ S has P.

For each i : store min j s.t. [i , j ] has P

i
1
...
i
...
n

j
j1
...
ji
...
jn

Query: [i , k]

5



Hereditary Properties

If a set S has a hereditary property P, then any
superset S ′ ⊇ S has P.

For each i : store min j s.t. [i , j ] has P

i
1
...
i
...
n

j
j1
...
ji
...
jn

O(n) bits
O(1) query time

5



Hereditary Properties

If a set S has a hereditary property P, then any
superset S ′ ⊇ S has P.

Henceforth, only concerned with preprocessing.

For each i : store min j s.t. [i , j ] has P

i
1
...
i
...
n

j
j1
...
ji
...
jn

O(n) bits
O(1) query time

5



Previous Results

Bannister, Devanny, Goodrich, Simons, Trott; CCCG 2014 :
• Time-windowed convex hull

– Gift wrapping & tangent O(log2 w)
– Linear programming O(logw)
– Line decision O(logw)
– Line stabbing O(log2 w)

• Time-windowed approximate spherical range searching
• Time-windowed approximate nearest neighbor

6



Previous Results

Bannister, Devanny, Goodrich, Simons, Trott; CCCG 2014 :
• Time-windowed convex hull

– Gift wrapping & tangent O(log2 w)
– Linear programming O(logw)
– Line decision O(logw)
– Line stabbing O(log2 w)

• Time-windowed approximate spherical range searching
• Time-windowed approximate nearest neighbor

w = t2 − t1, the
size of the query
time window

6



Previous Results

Bannister, Devanny, Goodrich, Simons, Trott; CCCG 2014 :
• Time-windowed convex hull

– Gift wrapping & tangent O(log2 w)
– Linear programming O(logw)
– Line decision O(logw)
– Line stabbing O(log2 w)

• Time-windowed approximate spherical range searching
• Time-windowed approximate nearest neighbor

Hereditary

6



Previous Results

Chan and Pratt; CCCG 2015 :
• Time-windowed closest pair decision problem

– Preprocessing: O(n)
– Query: O(1)
– Space: O(n) bits of space

• Time-windowed closest pair
– Preprocessing: O(n log n log log n)
– Query: O(log n log log n)
– Space: O(n log n)

6



Previous Results

Chan and Pratt; CCCG 2015 :
• Time-windowed closest pair decision problem

– Preprocessing: O(n)
– Query: O(1)
– Space: O(n) bits of space

• Time-windowed closest pair
– Preprocessing: O(n log n log log n)
– Query: O(log n log log n)
– Space: O(n log n)

Hereditary

6



Previous Results

Bokal, Cabello, Eppstein; SoCG 2015 :
• Time-windowed decision problems w/ hereditary properties

– 2D diameter
∗ Preprocessing: O(n log2 n)

– 2D convex hull area
∗ Preprocessing: O(n log n log log n)

– 2D monotone paths
∗ Preprocessing: O(n)

6



Previous Results

Bokal, Cabello, Eppstein; SoCG 2015 :
• Time-windowed decision problems w/ hereditary properties

– 2D diameter
∗ Preprocessing: O(n log2 n)

– 2D convex hull area
∗ Preprocessing: O(n log n log log n)

– 2D monotone paths
∗ Preprocessing: O(n)

6



New Results

Approach #1: Generalized Range Successor

Problem Preprocessing Time

2D diameter decision O(n log2 n)
→ improved to O(n log n)

3D diameter decision O(n log2 n)
2D orth. seg. intersection detection O(n log n log log n)

7



New Results

Approach #1: Generalized Range Successor

Problem Preprocessing Time

2D diameter decision O(n log2 n)
→ improved to O(n log n)

3D diameter decision O(n log2 n)
2D orth. seg. intersection detection O(n log n log log n)

Approach #2: FIFO Update Sequence

Problem Preprocessing Time
2D convex hull area decision O(n log n log log n)
→ improved to O(nα(n) log n)

2D width decision O(n log8 n)

7



New Results

Approach #1: Generalized Range Successor

Problem Preprocessing Time

2D diameter decision O(n log2 n)
→ improved to O(n log n)

3D diameter decision O(n log2 n)
2D orth. seg. intersection detection O(n log n log log n)

Approach #2: FIFO Update Sequence

Problem Preprocessing Time
2D convex hull area decision O(n log n log log n)
→ improved to O(nα(n) log n)

2D width decision O(n log8 n)

7



Generalized Range Successor

The generalized range successor problem is to preprocess the
input to find the successor of each object among that object‘s
range.

Generalized Range Successor

8



Generalized Range Successor

The generalized range successor problem is to preprocess the
input to find the successor of each object among that object‘s
range. i.e. the next object in time order

Generalized Range Successor

8



Generalized Range Successor

The generalized range successor problem is to preprocess the
input to find the successor of each object among that object‘s
range. i.e. the next object in time order

dependent on the
specific problem

Generalized Range Successor

8



Generalized Range Successor

The generalized range successor problem is to preprocess the
input to find the successor of each object among that object‘s
range. i.e. the next object in time order

dependent on the
specific problem

Example problem: is there
a pair of points p, q s.t.
d(p, q) > 1?

Generalized Range Successor

8



Generalized Range Successor

The generalized range successor problem is to preprocess the
input to find the successor of each object among that object‘s
range. i.e. the next object in time order

dependent on the
specific problem

Example problem: is there
a pair of points p, q s.t.
d(p, q) > 1?

Range of a point p: the
complement of a unit
disk centered at p

Generalized Range Successor

8



Generalized Range Successor

The generalized range successor problem is to preprocess the
input to find the successor of each object among that object‘s
range. i.e. the next object in time order

dependent on the
specific problem

Example problem: is there
a pair of points p, q s.t.
d(p, q) > 1?

Range of a point p: the
complement of a unit
disk centered at p

p

Generalized Range Successor

8



Generalized Range Successor

The generalized range successor problem is to preprocess the
input to find the successor of each object among that object‘s
range. i.e. the next object in time order

dependent on the
specific problem

Example problem: is there
a pair of points p, q s.t.
d(p, q) > 1?

Range of a point p: the
complement of a unit
disk centered at p

p

Generalized Range Successor

8



Generalized Range Successor

The generalized range successor problem is to preprocess the
input to find the successor of each object among that object‘s
range. i.e. the next object in time order

dependent on the
specific problem

Example problem: is there
a pair of points p, q s.t.
d(p, q) > 1?

Range of a point p: the
complement of a unit
disk centered at p

p

Generalized Range Successor

8



Generalized Range Successor

The generalized range successor problem is to preprocess the
input to find the successor of each object among that object‘s
range. i.e. the next object in time order

dependent on the
specific problem

Example problem: is there
a pair of points p, q s.t.
d(p, q) > 1?

Range of a point p: the
complement of a unit
disk centered at p

p

Generalized Range Successor

Not in p‘s
range

8



Generalized Range Successor

The generalized range successor problem is to preprocess the
input to find the successor of each object among that object‘s
range. i.e. the next object in time order

dependent on the
specific problem

Example problem: is there
a pair of points p, q s.t.
d(p, q) > 1?

Range of a point p: the
complement of a unit
disk centered at p

p

Generalized Range Successor

Not in p‘s
range

In p‘s range

8



Why Generalized Range Successor?

9



Why Generalized Range Successor?

Recall this table

i
1
...
i
...
n

j
j1
...
ji
...
jn

9



Why Generalized Range Successor?

Recall this table

i
1
...
i
...
n

j
j1
...
ji
...
jn

Given time

9



Why Generalized Range Successor?

Recall this table

i
1
...
i
...
n

j
j1
...
ji
...
jn

Given time
min time s.t.
(i , ji ) has P

9



Why Generalized Range Successor?

Recall this table

i
1
...
i
...
n

j
j1
...
ji
...
jn

Given time
min time s.t.
(i , ji ) has P

ji = t(p) s.t.
p is G.R.S. of q, and
i = t(q)

9



Why Generalized Range Successor?

Recall this table

i
1
...
i
...
n

j
j1
...
ji
...
jn

Given time
min time s.t.
(i , ji ) has P

ji = t(p) s.t.
p is G.R.S. of q, and
i = t(q)

∴ can preprocess for some time-windowed decision problems by
solving n instances of G.R.S.

9



Generalized Range Successor

1 2 3 4 5 6 7 8 9

Consider the objects
in time-order

10



Generalized Range Successor

Range
Tree

1 2 3 4 5 6 7 8 9

10



Generalized Range Successor

Range
Tree

1 2 3 4 5 6 7 8 9

Subtree

10



Generalized Range Successor

Range
Tree

1 2 3 4 5 6 7 8 9

Secondary
Structure

Subtree

10



Generalized Range Successor

Range
Tree

q

Secondary
Structure

Subtree

10



Generalized Range Successor

Range
Tree

q

Secondary
Structure

Subtree

10

in q’s range



Avoiding Binary Search

q p

Up phase

11



Avoiding Binary Search

q p

Up phase

11



Avoiding Binary Search

q p

Up phase

11



Avoiding Binary Search

q p

Up phase

11



Avoiding Binary Search

q p

Down phase

11



Avoiding Binary Search

q p

Down phase

11



Avoiding Binary Search

q p

Down phase

11



Avoiding Binary Search

q p

Down phase

11



Generalized Range Successor: Conclusion

2D diameter decision

12



Generalized Range Successor: Conclusion

2D diameter decision

• Point location in unit disk intersection → binary search
O(log n) · O(n log n) = O(n log2 n)

12



Generalized Range Successor: Conclusion

2D diameter decision

• Point location in unit disk intersection → binary search
O(log n) · O(n log n) = O(n log2 n)

• Fractional cascading → O(n log n)

12



Generalized Range Successor: Conclusion

2D diameter decision

• Point location in unit disk intersection → binary search
O(log n) · O(n log n) = O(n log2 n)

• Fractional cascading → O(n log n)

3D diameter decision

12



Generalized Range Successor: Conclusion

2D diameter decision

• Point location in unit disk intersection → binary search
O(log n) · O(n log n) = O(n log2 n)

• Fractional cascading → O(n log n)

3D diameter decision

• Point location in unit ball intersection → 2D point location
O(log n) · O(n log n) = O(n log2 n)

12



Generalized Range Successor: Conclusion

2D diameter decision

• Point location in unit disk intersection → binary search
O(log n) · O(n log n) = O(n log2 n)

• Fractional cascading → O(n log n)

3D diameter decision

• Point location in unit ball intersection → 2D point location
O(log n) · O(n log n) = O(n log2 n)

Orthogonal segment intersection detection

12



Generalized Range Successor: Conclusion

2D diameter decision

• Point location in unit disk intersection → binary search
O(log n) · O(n log n) = O(n log2 n)

• Fractional cascading → O(n log n)

3D diameter decision

• Point location in unit ball intersection → 2D point location
O(log n) · O(n log n) = O(n log2 n)

Orthogonal segment intersection detection

• Orthogonal intersection detection → point location
O(log log n) · O(n log n) = O(n log n log log n)

12



New Results

Approach #1: Generalized Range Successor

Problem Preprocessing Time

2D diameter decision O(n log2 n)
→ improved to O(n log n)

3D diameter decision O(n log2 n)
2D orth. seg. intersection detection O(n log n log log n)

Approach #2: FIFO Update Sequence

Problem Preprocessing Time
2D convex hull area decision O(n log n log log n)
→ improved to O(nα(n) log n)

2D width decision O(n log8 n)

13



New Results

Approach #1: Generalized Range Successor

Problem Preprocessing Time

2D diameter decision O(n log2 n)
→ improved to O(n log n)

3D diameter decision O(n log2 n)
2D orth. seg. intersection detection O(n log n log log n)

Approach #2: FIFO Update Sequence

Problem Preprocessing Time
2D convex hull area decision O(n log n log log n)
→ improved to O(nα(n) log n)

2D width decision O(n log8 n)

13



Time-Windowed → Dynamic CH area > 1?

14



Time-Windowed → Dynamic CH area > 1?

14



Time-Windowed → Dynamic

1

2

3

4

5

CH area > 1?

14



Time-Windowed → Dynamic

1

2

3

4

5 1
2
3
4
5

i

CH area > 1?

14



Time-Windowed → Dynamic

1

2

3

4

5 1
2
3
4
5

i j

CH area > 1?

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS

1
2
3
4
5

i j

CH area > 1?

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS No: Has property?

1
2
3
4
5

i j

CH area > 1?

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS No

1

: Has property?

1
2
3
4
5

i j

CH area > 1?

1

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS No

1

2 : Has property?

1
2
3
4
5

i j

CH area > 1?

1
2

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS Yes

1

2

3

: Has property?

1
2
3
4
5

i j

CH area > 1?

1
2
3

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS Yes

1

2

3

: Has property?

1
2
3
4
5

i j

3

CH area > 1?

1
2
3

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS No2

3

: Has property?

1
2
3
4
5

i j

3

CH area > 1?

2
3

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS Yes2

3

4

: Has property?

1
2
3
4
5

i j

3

CH area > 1?

2
3
4

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS Yes2

3

4

: Has property?

1
2
3
4
5

i j

3
4

CH area > 1?

2
3
4

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS No

3

4

: Has property?

1
2
3
4
5

i j

3
4

CH area > 1?

3
4

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS Yes

3

4

: Has property?

1
2
3
4
5

i j

3
4

CH area > 1?

5

3
4
5

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS Yes

3

4

: Has property?

1
2
3
4
5

i j

3
4

CH area > 1?

5

53
4
5

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS No

4

: Has property?

1
2
3
4
5

i j

3
4

CH area > 1?

5

5
4
5

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS No

4

: Has property?

1
2
3
4
5

i j

3
4

CH area > 1?

5

5
64

5

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS No: Has property?

1
2
3
4
5

i j

3
4

CH area > 1?

5

5
6

5

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS No: Has property?

1
2
3
4
5

i j

3
4

CH area > 1?

5

5
6
65

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS No: Has property?

1
2
3
4
5

i j

3
4

CH area > 1?

5
6
6

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS No: Has property?

1
2
3
4
5

i j

3
4

CH area > 1?

5
6
6

Notice the order of
insertion/deletion

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS No

1

: Has property?

1
2
3
4
5

i j

3
4

CH area > 1?

5
6
6

Notice the order of
insertion/deletion 1

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS No

1

2 : Has property?

1
2
3
4
5

i j

3
4

CH area > 1?

5
6
6

Notice the order of
insertion/deletion 1

2

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS No

1

2

3

: Has property?

1
2
3
4
5

i j

3
4

CH area > 1?

5
6
6

Notice the order of
insertion/deletion 1

2
3

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS No2

3

: Has property?

1
2
3
4
5

i j

3
4

CH area > 1?

5
6
6

Notice the order of
insertion/deletion

2
3

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS No2

3

4

: Has property?

1
2
3
4
5

i j

3
4

CH area > 1?

5
6
6

Notice the order of
insertion/deletion

2
3
4

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS No

3

4

: Has property?

1
2
3
4
5

i j

3
4

CH area > 1?

5
6
6

Notice the order of
insertion/deletion

3
4

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS No

3

4

: Has property?

1
2
3
4
5

i j

3
4

CH area > 1?

5

5
6
6

Notice the order of
insertion/deletion

3
4
5

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS No

4

: Has property?

1
2
3
4
5

i j

3
4

CH area > 1?

5

5
6
6

Notice the order of
insertion/deletion

4
5

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS No: Has property?

1
2
3
4
5

i j

3
4

CH area > 1?

5

5
6
6

Notice the order of
insertion/deletion

5

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS No: Has property?

1
2
3
4
5

i j

3
4

CH area > 1?

5
6
6

Notice the order of
insertion/deletion

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS No: Has property?

1
2
3
4
5

i j

3
4

CH area > 1?

5
6
6

Notice the order of
insertion/deletion

First-in, first-out:
like a queue

14



Time-Windowed → Dynamic

1

2

3

4

5

Dynamic DS No: Has property?

1
2
3
4
5

i j

3
4

CH area > 1?

5
6
6

Notice the order of
insertion/deletion

First-in, first-out:
like a queue

FIFO update sequence

14



Dynamic Convex Hull Complexity

Generally, O(n2) changes over O(n) updates

15



Dynamic Convex Hull Complexity

Generally, O(n2) changes over O(n) updates

O(n) points

15



Dynamic Convex Hull Complexity

Generally, O(n2) changes over O(n) updates

O(n) points
on the upper hull

15



Dynamic Convex Hull Complexity

Generally, O(n2) changes over O(n) updates

O(n) points
on the upper hull

• Add a point p

15



Dynamic Convex Hull Complexity

Generally, O(n2) changes over O(n) updates

O(n) points

• Add a point p
• O(n) changes

15



Dynamic Convex Hull Complexity

Generally, O(n2) changes over O(n) updates

O(n) points

• Add a point p
• O(n) changes
• Add/remove

p O(n) times

15



Dynamic Convex Hull Complexity

Generally, O(n2) changes over O(n) updates

O(n) points

• Add a point p
• O(n) changes
• Add/remove

p O(n) times

15



Dynamic Convex Hull Complexity

Generally, O(n2) changes over O(n) updates

O(n) points
on the upper hull

• Add a point p
• O(n) changes
• Add/remove

p O(n) times

15



Dynamic Convex Hull Complexity

Generally, O(n2) changes over O(n) updates

O(n) points
on the upper hull

• Add a point p
• O(n) changes
• Add/remove

p O(n) times

15



Dynamic Convex Hull Complexity

Generally, O(n2) changes over O(n) updates

O(n) points

• Add a point p
• O(n) changes
• Add/remove

p O(n) times

15



Dynamic Convex Hull Complexity

Generally, O(n2) changes over O(n) updates

O(n) points

• Add a point p
• O(n) changes
• Add/remove

p O(n) times

15



Dynamic Convex Hull Complexity

Generally, O(n2) changes over O(n) updates

O(n) points
on the upper hull

• Add a point p
• O(n) changes
• Add/remove

p O(n) times

15



Dynamic Convex Hull Complexity

Generally, O(n2) changes over O(n) updates

O(n) points
on the upper hull

• Add a point p
• O(n) changes
• Add/remove

p O(n) times

15



Dynamic Convex Hull Complexity

Generally, O(n2) changes over O(n) updates

O(n) points

• Add a point p
• O(n) changes
• Add/remove

p O(n) times

15



Dynamic Convex Hull Complexity

Generally, O(n2) changes over O(n) updates

O(n) points

• Add a point p
• O(n) changes
• Add/remove

p O(n) times
• O(n2) changes

15



FIFO Convex Hull Complexity

Lemma: # of structural changes to upper
hull after n FIFO updates is O(n log n).

16



FIFO Convex Hull Complexity

Lemma: # of structural changes to upper
hull after n FIFO updates is O(n log n).

distinct upper hull
edges over n updates

16



FIFO Convex Hull Complexity

Lemma: # of structural changes to upper
hull after n FIFO updates is O(n log n).

distinct upper hull
edges over n updates

16



FIFO Convex Hull Complexity

Lemma: # of structural changes to upper
hull after n FIFO updates is O(n log n).

distinct upper hull
edges over n updates

16



FIFO Convex Hull Complexity

Lemma: # of structural changes to upper
hull after n FIFO updates is O(n log n).

distinct upper hull
edges over n updates

median

16



FIFO Convex Hull Complexity

Lemma: # of structural changes to upper
hull after n FIFO updates is O(n log n).

distinct upper hull
edges over n updates

median

bridge

16



FIFO Convex Hull Complexity

Lemma: # of structural changes to upper
hull after n FIFO updates is O(n log n).

distinct upper hull
edges over n updates

median

bridge

O(n) distinct bridges
over n updates

16



FIFO Convex Hull Complexity

Lemma: # of structural changes to upper
hull after n FIFO updates is O(n log n).

distinct upper hull
edges over n updates

median

bridge

O(n) distinct bridges
over n updates

E (n) = 2 · E (n) + O(n)

16



FIFO Convex Hull Complexity

Lemma: # of structural changes to upper
hull after n FIFO updates is O(n log n).

distinct upper hull
edges over n updates

median

bridge

O(n) distinct bridges
over n updates

E (n) = 2 · E (n) + O(n) = O(n log n)

16



FIFO Convex Hull Complexity

Lemma: # of structural changes to upper
hull after n FIFO updates is O(n log n).

distinct upper hull
edges over n updates

O(n log n)

16



FIFO Convex Hull Complexity

Lemma: # of structural changes to upper
hull after n FIFO updates is O(n log n).

distinct upper hull
edges over n updates

O(n log n)

FIFO order → edge never
re-added to upper hull

16



FIFO Convex Hull Complexity

Lemma: # of structural changes to upper
hull after n FIFO updates is O(n log n).

distinct upper hull
edges over n updates

O(n log n)

FIFO order → edge never
re-added to upper hull

u

v

16



FIFO Convex Hull Complexity

Lemma: # of structural changes to upper
hull after n FIFO updates is O(n log n).

distinct upper hull
edges over n updates

O(n log n)

FIFO order → edge never
re-added to upper hull

u

v

16



FIFO Convex Hull Complexity

Lemma: # of structural changes to upper
hull after n FIFO updates is O(n log n).

distinct upper hull
edges over n updates

O(n log n)

FIFO order → edge never
re-added to upper hull

u

v

w

16



FIFO Convex Hull Complexity

Lemma: # of structural changes to upper
hull after n FIFO updates is O(n log n).

distinct upper hull
edges over n updates

O(n log n)

FIFO order → edge never
re-added to upper hull

u

v

w

16



FIFO Convex Hull Complexity

Lemma: # of structural changes to upper
hull after n FIFO updates is O(n log n).

distinct upper hull
edges over n updates

O(n log n)

FIFO order → edge never
re-added to upper hull

u

v

w

16



FIFO Convex Hull Complexity

Lemma: # of structural changes to upper
hull after n FIFO updates is O(n log n).

distinct upper hull
edges over n updates

O(n log n)

FIFO order → edge never
re-added to upper hull

u

v

w

16



FIFO: Conclusion

2D width decision

17



FIFO: Conclusion

2D width decision

• Brodal and Jacob
O(n log2 n)

17



FIFO: Conclusion

2D width decision

• Brodal and Jacob
O(n log2 n)

• Hull trees + Davenport-Schinzel sequences
O(nα(n) log n), where α is inverse Ackermann function

17



FIFO: Conclusion

2D width decision

• Brodal and Jacob
O(n log2 n)

• Hull trees + Davenport-Schinzel sequences
O(nα(n) log n), where α is inverse Ackermann function

2D width decision

17



FIFO: Conclusion

2D width decision

• Brodal and Jacob
O(n log2 n)

• Hull trees + Davenport-Schinzel sequences
O(nα(n) log n), where α is inverse Ackermann function

2D width decision

• Eppstein’s dynamic 2D data structure
O(n log8 n)

17



Open Problem

The number of structural changes to the upper hull of a set of
points in R2 over n FIFO updates is at most O(n log n).

Result:

18



Open Problem

The number of structural changes to the upper hull of a set of
points in R2 over n FIFO updates is at most O(n log n).

Result:

Open Problem:
Can this combinatorial bound be improved? Perhaps to O(n)?

18


	FIFO Update Sequence Approach

