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Problem Statement

Preprocess a set of n geometric objects
each associated with a time value, s.t.:

given a query window [t1, t2],
determine whether the subset of
objects whose time values are within
that window have a given property.
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Problem Statement

Preprocess a set of n geometric objects
each associated with a time value, s.t.:

e.g., points or segments

1 to n

e.g. diameter > 1

given a query window [t1, t2],
determine whether the subset of
objects whose time values are within
that window have a given property.
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Motivation

• Geographic Information Systems (GIS) data may consist
not only of latitude, longitude, and altitude coordinates but
also time

• Timestamped data (for example, social network data)
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Example: Time-Windowed Diameter Decision

Preprocess a set of n time-labeled points, to efficiently
determine if the points within the query time window have
diameter > 1.
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Hereditary Properties

If a set S has a hereditary property P, then any
superset S ′ ⊇ S has P.

Problem Property
diameter decision diameter > 1

convex hull area decision area of convex hull > 1
orthogonal segment inters. detect. ∃ intersecting segments

width decision width > 1

Examples:
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Hereditary Properties

If a set S has a hereditary property P, then any
superset S ′ ⊇ S has P.

Henceforth, only concerned with preprocessing.

For each i : store min j s.t. [i , j ] has P

i
1
...
i
...
n

j
j1
...
ji
...
jn

O(n) bits
O(1) query time
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Previous Results

Bannister, Devanny, Goodrich, Simons, Trott; CCCG 2014 :
• Time-windowed convex hull

– Gift wrapping & tangent O(log2 w)
– Linear programming O(logw)
– Line decision O(logw)
– Line stabbing O(log2 w)

• Time-windowed approximate spherical range searching
• Time-windowed approximate nearest neighbor
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Previous Results

Chan and Pratt; CCCG 2015 :
• Time-windowed closest pair decision problem

– Preprocessing: O(n)
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Previous Results

Bokal, Cabello, Eppstein; SoCG 2015 :
• Time-windowed decision problems w/ hereditary properties

– 2D diameter
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New Results

Approach #1: Generalized Range Successor

Problem Preprocessing Time

2D diameter decision O(n log2 n)
→ improved to O(n log n)

3D diameter decision O(n log2 n)
2D orth. seg. intersection detection O(n log n log log n)
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Why Generalized Range Successor?

Recall this table

i
1
...
i
...
n

j
j1
...
ji
...
jn

Given time
min time s.t.
(i , ji ) has P

ji = t(p) s.t.
p is G.R.S. of q, and
i = t(q)

∴ can preprocess for some time-windowed decision problems by
solving n instances of G.R.S.
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Generalized Range Successor

1 2 3 4 5 6 7 8 9

Consider the objects
in time-order
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2D diameter decision

• Point location in unit disk intersection → binary search
O(log n) · O(n log n) = O(n log2 n)

• Fractional cascading → O(n log n)

3D diameter decision

• Point location in unit ball intersection → 2D point location
O(log n) · O(n log n) = O(n log2 n)

Orthogonal segment intersection detection

• Orthogonal intersection detection → point location
O(log log n) · O(n log n) = O(n log n log log n)
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2D width decision

• Brodal and Jacob
O(n log2 n)

• Hull trees + Davenport-Schinzel sequences
O(nα(n) log n), where α is inverse Ackermann function

2D width decision

• Eppstein’s dynamic 2D data structure
O(n log8 n)
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points in R2 over n FIFO updates is at most O(n log n).

Result:

Open Problem:
Can this combinatorial bound be improved? Perhaps to O(n)?

18


	FIFO Update Sequence Approach

